The Strategic Entering Time of a Commerce Platform

王家禮 Chia－Li Wang東華大學 Dong Hwa University，Taiwan Joint work with J．Kim and B．Kim

18th Int＇I Workshop on Markov Processes and Related Topics Tianjin University，July 2023

Strategic Time of Arrivals to a Service System

- The morning commute problem: A fluid model for the commuter's decision of when to reach a congested bottleneck - Vickrey [1969]

Strategic Time of Arrivals to a Service System

- The morning commute problem: A fluid model for the commuter's decision of when to reach a congested bottleneck - Vickrey [1969]
- Rephrased the morning commute problem into a Markovian queueing problem - Glazer and Hassin [1983]

Strategic Time of Arrivals to a Service System

- The morning commute problem: A fluid model for the commuter's decision of when to reach a congested bottleneck - Vickrey [1969]
- Rephrased the morning commute problem into a Markovian queueing problem - Glazer and Hassin [1983]
- The concert queueing game: (both fluid and Markovian models) Should one go early to secure a good seat, but wait a long time in queue, or go late when the queue is shorter but the better seats already taken? - Jain et. al. [2011]

Strategic Time of Arrivals to a Service System

- The morning commute problem: A fluid model for the commuter's decision of when to reach a congested bottleneck - Vickrey [1969]
- Rephrased the morning commute problem into a Markovian queueing problem - Glazer and Hassin [1983]
- The concert queueing game: (both fluid and Markovian models) Should one go early to secure a good seat, but wait a long time in queue, or go late when the queue is shorter but the better seats already taken? - Jain et. al. [2011]
- A survey of queueing systems with strategic timing of arrivals - Haviv and Ravner [2021]

Strategic Time of Arrivals to a Service System

- The morning commute problem: A fluid model for the commuter's decision of when to reach a congested bottleneck - Vickrey [1969]
- Rephrased the morning commute problem into a Markovian queueing problem - Glazer and Hassin [1983]
- The concert queueing game: (both fluid and Markovian models) Should one go early to secure a good seat, but wait a long time in queue, or go late when the queue is shorter but the better seats already taken? - Jain et. al. [2011]
- A survey of queueing systems with strategic timing of arrivals - Haviv and Ravner [2021]
- We will extend the study to modern service systems, the online and e-commerce platforms.

A Commerce Platform of Double-Sided Queues

- A commerce platform is composed of two queues:

Demand queue of buyers for some item, and Supply queue of sellers of the item, a double-sided queue.

A Commerce Platform of Double-Sided Queues

- A commerce platform is composed of two queues: Demand queue of buyers for some item, and Supply queue of sellers of the item, a double-sided queue.
- Platform is operated during $[0, T], T>0$, where buyers and sellers are allowed to arrive before time 0 , and queue up.

A Commerce Platform of Double-Sided Queues

- A commerce platform is composed of two queues: Demand queue of buyers for some item, and Supply queue of sellers of the item, a double-sided queue.
- Platform is operated during $[0, T], T>0$, where buyers and sellers are allowed to arrive before time 0 , and queue up.
- State of the platform is unobservable.

A Commerce Platform of Double-Sided Queues

- A commerce platform is composed of two queues: Demand queue of buyers for some item, and Supply queue of sellers of the item, a double-sided queue.
- Platform is operated during $[0, T], T>0$, where buyers and sellers are allowed to arrive before time 0 , and queue up.
- State of the platform is unobservable.
- The buyer and the seller choose the respective entering times independently of everything else.

A Commerce Platform of Double-Sided Queues

- A commerce platform is composed of two queues: Demand queue of buyers for some item, and Supply queue of sellers of the item, a double-sided queue.
- Platform is operated during $[0, T], T>0$, where buyers and sellers are allowed to arrive before time 0 , and queue up.
- State of the platform is unobservable.
- The buyer and the seller choose the respective entering times independently of everything else.
- Numbers of joining buyers and sellers are independent Poisson random variables with respective means λ_{b} and λ_{s}.

Trading on the Commerce Platform

- Trading rule is one-to-one and first-join-first-trade (FJFT).

Trading on the Commerce Platform

- Trading rule is one-to-one and first-join-first-trade (FJFT).
- At time 0 , all waiting buyers and sellers are traded at once. The surplus of demand or supply remains in queue.

Trading on the Commerce Platform

- Trading rule is one-to-one and first-join-first-trade (FJFT).
- At time 0 , all waiting buyers and sellers are traded at once. The surplus of demand or supply remains in queue.
- Joining buyer finds supply queue nonempty is traded immediately and departs; so is for joining seller.

Trading on the Commerce Platform

- Trading rule is one-to-one and first-join-first-trade (FJFT).
- At time 0 , all waiting buyers and sellers are traded at once. The surplus of demand or supply remains in queue.
- Joining buyer finds supply queue nonempty is traded immediately and departs; so is for joining seller.
- At any time in $(0, T)$, at most one queue is nonempty.

Trading on the Commerce Platform

- Trading rule is one-to-one and first-join-first-trade (FJFT).
- At time 0 , all waiting buyers and sellers are traded at once. The surplus of demand or supply remains in queue.
- Joining buyer finds supply queue nonempty is traded immediately and departs; so is for joining seller.
- At any time in $(0, T)$, at most one queue is nonempty.
- Balking and reneging are not allowed; every arrival will enter and stay until either being traded or time T.

Trading on the Commerce Platform

- Trading rule is one-to-one and first-join-first-trade (FJFT).
- At time 0 , all waiting buyers and sellers are traded at once. The surplus of demand or supply remains in queue.
- Joining buyer finds supply queue nonempty is traded immediately and departs; so is for joining seller.
- At any time in $(0, T)$, at most one queue is nonempty.
- Balking and reneging are not allowed; every arrival will enter and stay until either being traded or time T.
- A buyer receives reward R_{b} from a trade and incurs waiting cost at rate C_{b}, and $\left(R_{s}, C_{s}\right)$ for a seller.

A Mix of Non-Cooperative and Cooperative Games

- One incentive for selecting entering time is to shorten the waiting time, the other is to be traded because untraded demand or supply at T is void while waiting cost is valid.

A Mix of Non-Cooperative and Cooperative Games

- One incentive for selecting entering time is to shorten the waiting time, the other is to be traded because untraded demand or supply at T is void while waiting cost is valid.
- Buyers and sellers want to maximize their expected payoffs.

A Mix of Non-Cooperative and Cooperative Games

- One incentive for selecting entering time is to shorten the waiting time, the other is to be traded because untraded demand or supply at T is void while waiting cost is valid.
- Buyers and sellers want to maximize their expected payoffs.
- It is a mix of non-cooperative games among each side and a cooperative game between two sides.

A Mix of Non-Cooperative and Cooperative Games

- One incentive for selecting entering time is to shorten the waiting time, the other is to be traded because untraded demand or supply at T is void while waiting cost is valid.
- Buyers and sellers want to maximize their expected payoffs.
- It is a mix of non-cooperative games among each side and a cooperative game between two sides.
- Suppose the buyer chooses $B(t)$ as the distribution function of entering time, and $S(t)$ by the seller, that is, $B(t)$ is the strategy of buyer and $S(t)$ is the strategy of seller.

A Mix of Non-Cooperative and Cooperative Games

- One incentive for selecting entering time is to shorten the waiting time, the other is to be traded because untraded demand or supply at T is void while waiting cost is valid.
- Buyers and sellers want to maximize their expected payoffs.
- It is a mix of non-cooperative games among each side and a cooperative game between two sides.
- Suppose the buyer chooses $B(t)$ as the distribution function of entering time, and $S(t)$ by the seller, that is, $B(t)$ is the strategy of buyer and $S(t)$ is the strategy of seller.
- Proposition. Under strategies B and S, with respective pdf's $b(t)$ and $s(t)$, numbers of joining buyers and sellers are independent nonhomogeneous Poisson processes with intensity functions $\lambda_{b} b(t)$ and $\lambda_{s} s(t)$, respectively.

The Strategy Profile

- A strategy profile is composed of strategies of both buyers and sellers, (B, S).

The Strategy Profile

- A strategy profile is composed of strategies of both buyers and sellers, (B, S).
- Expected payoff of a buyer who arrives at t, given all other buyers use strategy B and all sellers use strategy S, is

$$
\pi_{b}(t \mid B, S)=R_{b} \mathbb{P}\left(E_{b}(t) \mid B, S\right)-C_{b} \mathbb{E}\left[W_{b}(t) \mid B, S\right]
$$

where $E_{b}(t)=$ a buyer entering at t is traded by T and $W_{b}(t)=$ waiting time until either being traded or T.

The Strategy Profile

- A strategy profile is composed of strategies of both buyers and sellers, (B, S).
- Expected payoff of a buyer who arrives at t, given all other buyers use strategy B and all sellers use strategy S, is

$$
\pi_{b}(t \mid B, S)=R_{b} \mathbb{P}\left(E_{b}(t) \mid B, S\right)-C_{b} \mathbb{E}\left[W_{b}(t) \mid B, S\right]
$$

where $E_{b}(t)=$ a buyer entering at t is traded by T and $W_{b}(t)=$ waiting time until either being traded or T.

- Expected payoff of the seller is similarly defined.

Nash Equilibrium Strategy Profile

- (B, S) is a Nash equilibrium (NE) strategy profile if and only if

$$
\begin{aligned}
\pi_{b}(B \mid B, S) & =\sup _{\widetilde{B} \in \mathcal{D}} \pi_{b}(\widetilde{B} \mid B, S) \\
\pi_{b}(S \mid B, S) & =\sup _{\widetilde{S} \in \mathcal{D}} \pi_{s}(\widetilde{S} \mid B, S)
\end{aligned}
$$

where \mathcal{D} is the collection of all distributions on $(-\infty, T]$.

Nash Equilibrium Strategy Profile

- (B, S) is a Nash equilibrium (NE) strategy profile if and only if

$$
\begin{aligned}
\pi_{b}(B \mid B, S) & =\sup _{\widetilde{B} \in \mathcal{D}} \pi_{b}(\widetilde{B} \mid B, S) \\
\pi_{b}(S \mid B, S) & =\sup _{\widetilde{S} \in \mathcal{D}} \pi_{s}(\widetilde{S} \mid B, S)
\end{aligned}
$$

where \mathcal{D} is the collection of all distributions on $(-\infty, T]$.

- In equilibrium, if a buyer enters at t and another enters at s, then expected payoffs must be identical at these two instants. Thus, for some τ_{b} and any $t \in\left(\tau_{b}, T\right)$,

$$
\frac{d}{d t} \pi_{b}(t \mid B, S)=0
$$

Nash Equilibrium Strategy Profile

- (B, S) is a Nash equilibrium (NE) strategy profile if and only if

$$
\begin{aligned}
\pi_{b}(B \mid B, S) & =\sup _{\widetilde{B} \in \mathcal{D}} \pi_{b}(\widetilde{B} \mid B, S) \\
\pi_{b}(S \mid B, S) & =\sup _{\widetilde{S} \in \mathcal{D}} \pi_{s}(\widetilde{S} \mid B, S)
\end{aligned}
$$

where \mathcal{D} is the collection of all distributions on $(-\infty, T]$.

- In equilibrium, if a buyer enters at t and another enters at s, then expected payoffs must be identical at these two instants. Thus, for some τ_{b} and any $t \in\left(\tau_{b}, T\right)$,

$$
\frac{d}{d t} \pi_{b}(t \mid B, S)=0
$$

- Similarly, for some τ_{s} and any $t \in\left(\tau_{s}, T\right)$,

$$
\frac{d}{d t} \pi_{s}(t \mid B, S)=0
$$

Solutions of the Differential Equations

(i) For $t \in\left(\tau_{b}, T\right] \backslash\{0\}$,
$B^{\prime}(t)=\left\{\begin{array}{l}\frac{C_{b}}{\lambda_{b}} \frac{\mathbb{P}\left(X\left(\lambda_{b} B(t)\right) \geq Y\left(\lambda_{s} S(t)\right)\right)}{R_{b} \mathbb{P}\left(X\left(\lambda_{b} B(t)\right)=Y\left(\lambda_{s}\right)-1\right)+C_{b} \int_{t}^{T} \mathbb{P}\left(X\left(\lambda_{b} B(t)\right)=Y\left(\lambda_{s} S(u)\right)-1\right) d u}, \\ \text { if } t>0, \\ \frac{C_{b}}{\lambda_{b}} \frac{1}{R_{b} \mathbb{P}\left(X\left(\lambda_{b} B(t)\right)=Y\left(\lambda_{s}\right)-1\right)+C_{b} \int_{0}^{T} \mathbb{P}\left(X\left(\lambda_{b} B(t)\right)=Y\left(\lambda_{s} S(u)\right)-1\right) d u}, \\ \text { if } t<0,\end{array}\right.$
and $B\left(\tau_{b}\right)=0$ and $B(T)=1$.
(ii) For $t \in\left(\tau_{s}, T\right] \backslash\{0\}$,
$S^{\prime}(t)=\left\{\begin{array}{l}\frac{C_{s}}{\lambda_{s}} \frac{\mathbb{P}\left(X\left(\lambda_{s} S(t)\right) \geq Y\left(\lambda_{b} B(t)\right)\right)}{R_{s} \mathbb{P}\left(X\left(\lambda_{s} S(t)\right)=Y\left(\lambda_{b}\right)-1\right)+C_{s} \int_{t}^{T} \mathbb{P}\left(X\left(\lambda_{s} S(t)\right)=Y\left(\lambda_{b} B(u)\right)-1\right) d u}, \\ \text { if } t>0, \\ \frac{C_{s}}{\lambda_{s}}, \quad 1 \\ \text { if } t<0,\end{array}\right.$
and $S\left(\tau_{s}\right)=0$ and $S(T)=1$.

Existence and Uniqueness of NE Strategy Profile

- The differential equations of $B^{\prime}(t), \tau_{b}<t<T$, and $S^{\prime}(t)$, $\tau_{s}<t<T$, with $B\left(\tau_{b}\right)=S\left(\tau_{s}\right)=0$ and $B(T)=S(T)=1$ are the if-and-only-if condition of NE.

Existence and Uniqueness of NE Strategy Profile

- The differential equations of $B^{\prime}(t), \tau_{b}<t<T$, and $S^{\prime}(t)$, $\tau_{s}<t<T$, with $B\left(\tau_{b}\right)=S\left(\tau_{s}\right)=0$ and $B(T)=S(T)=1$ are the if-and-only-if condition of NE.
- By Picard-Lindelöf theorem, we can show that the system of ordinary differential equations for $B(t)$ and $S(t)$ has a unique solution.

Existence and Uniqueness of NE Strategy Profile

- The differential equations of $B^{\prime}(t), \tau_{b}<t<T$, and $S^{\prime}(t)$, $\tau_{s}<t<T$, with $B\left(\tau_{b}\right)=S\left(\tau_{s}\right)=0$ and $B(T)=S(T)=1$ are the if-and-only-if condition of NE.
- By Picard-Lindelöf theorem, we can show that the system of ordinary differential equations for $B(t)$ and $S(t)$ has a unique solution.
- Theorem 1. The NE strategy profile exists uniquely.

Existence and Uniqueness of NE Strategy Profile

- The differential equations of $B^{\prime}(t), \tau_{b}<t<T$, and $S^{\prime}(t)$, $\tau_{s}<t<T$, with $B\left(\tau_{b}\right)=S\left(\tau_{s}\right)=0$ and $B(T)=S(T)=1$ are the if-and-only-if condition of NE.
- By Picard-Lindelöf theorem, we can show that the system of ordinary differential equations for $B(t)$ and $S(t)$ has a unique solution.
- Theorem 1. The NE strategy profile exists uniquely.
- Associated shapes of NE strategy (B, S) can shed insight on the best response of the buyers and sellers in the cooperative and non-cooperative game.

Illustration of Non-Cooperation Between Buyers

Supply is deterministic with size 2 and at time T :

(a) $R_{b}=2$

(b) $\lambda_{b}=4$

With (a) a larger demand rate, competition becomes stronger, or (b) a larger reward, it is more affordable, the buyer tends to enter earlier for better chance to be traded, shows non-cooperation between buyers.

Illustration of Cooperation Between Buyers and Sellers

$$
R_{b}=R_{s}=4
$$

$$
\lambda_{b}=\lambda_{s}=2
$$

$$
\lambda_{b}=\lambda_{s}=6
$$

1. When all parameters are the same, two strategies are identical shows cooperation between buyer and seller.
2. When both rates are larger, the competition results in a buyer (seller) tends to arrive earlier.

Illustration 1 of Mixed Non-Cooperate and Cooperate

$$
R_{b}=4, R_{s}=2
$$

$$
\lambda_{b}=\lambda_{s}=6
$$

$$
\lambda_{b}=6, \lambda_{s}=4
$$

1. When the supply rate is smaller, an insecure buyer tends to arrive earlier while the secure seller enters later.
2. When $\max \left\{\tau_{b}, \tau_{s}\right\}<0$, respective areas to the left of 0 , i.e., probabilities of arriving before 0 , are close.

Illustration 2 of Mixed Non-Cooperate and Cooperate

$$
\lambda_{b}=6, \lambda_{s}=4
$$

$$
R_{b}=4, R_{s}=2
$$

$$
R_{b}=2, R_{s}=2
$$

1. When the reward is reduced, a buyer can no longer afford to arrive early so that $b(t)$ is squeezed to the right.
2. While $s(t)$, even with λ_{s} and R_{s} unchanged, moves rightward a little accordingly.

Illustration 3 of Mixed Non-Cooperate and Cooperate

$$
\lambda_{b}=6, \lambda_{s}=4
$$

(a) $R_{b}=4, R_{s}=2$

(b) $R_{b}=2, R_{s}=4$

When the demand rate is larger than the supply rate, comparing (a) and (b), i.e., reversing respective rewards, shows that a buyer is more concern on being traded than on waiting cost.

Social Welfare Under NE Strategy

- Let $\left(B^{*}, S^{*}\right)$ be the unique NE. Associated social welfare is

$$
W\left(B^{*}, S^{*}\right)=\lambda_{b} \pi_{b}\left(B^{*} \mid B^{*}, S^{*}\right)+\lambda_{s} \pi_{s}\left(S^{*} \mid B^{*}, S^{*}\right) .
$$

Social Welfare Under NE Strategy

- Let $\left(B^{*}, S^{*}\right)$ be the unique NE. Associated social welfare is

$$
W\left(B^{*}, S^{*}\right)=\lambda_{b} \pi_{b}\left(B^{*} \mid B^{*}, S^{*}\right)+\lambda_{s} \pi_{s}\left(S^{*} \mid B^{*}, S^{*}\right)
$$

- Since $\pi_{b}\left(B^{*} \mid B^{*}, S^{*}\right)=\pi_{b}\left(t \mid B^{*}, S^{*}\right)$ for all $t \in\left[\tau_{b}, T\right]$,

$$
\pi_{b}\left(B^{*} \mid B^{*}, S^{*}\right)=\pi_{b}\left(T \mid B^{*}, S^{*}\right)=R_{b} \mathbb{P}\left\{X\left(\lambda_{b}\right)<Y\left(\lambda_{s}\right)\right\} .
$$

where $X(\mu)$ and $Y(v)$ are independent Poisson random variables with means μ and v, respectively.

Social Welfare Under NE Strategy

- Let $\left(B^{*}, S^{*}\right)$ be the unique NE. Associated social welfare is

$$
W\left(B^{*}, S^{*}\right)=\lambda_{b} \pi_{b}\left(B^{*} \mid B^{*}, S^{*}\right)+\lambda_{s} \pi_{s}\left(S^{*} \mid B^{*}, S^{*}\right)
$$

- Since $\pi_{b}\left(B^{*} \mid B^{*}, S^{*}\right)=\pi_{b}\left(t \mid B^{*}, S^{*}\right)$ for all $t \in\left[\tau_{b}, T\right]$,

$$
\pi_{b}\left(B^{*} \mid B^{*}, S^{*}\right)=\pi_{b}\left(T \mid B^{*}, S^{*}\right)=R_{b} \mathbb{P}\left\{X\left(\lambda_{b}\right)<Y\left(\lambda_{s}\right)\right\}
$$

where $X(\mu)$ and $Y(v)$ are independent Poisson random variables with means μ and v, respectively.

- Similarly, $\lambda_{s} \pi_{s}\left(S^{*} \mid B^{*}, S^{*}\right)=R_{s} \mathbb{P}\left\{X\left(\lambda_{b}\right)>Y\left(\lambda_{s}\right)\right\}$, and, thus,
$W\left(B^{*}, S^{*}\right)=\lambda_{b} R_{b} \mathbb{P}\left\{X\left(\lambda_{b}\right)<Y\left(\lambda_{s}\right)\right\}+\lambda_{s} R_{s} \mathbb{P}\left\{X\left(\lambda_{b}\right)>Y\left(\lambda_{s}\right)\right\}$.

Social Welfare Under Socially Optimal Strategy

- Let $\left(B^{\circ}, S^{\circ}\right)$ be the socially optimal strategy profile under centralization. It can be easily seen

$$
B^{o}(t)=S^{o}(t)= \begin{cases}0 & \text { if } t<T \\ 1 & \text { if } t=T\end{cases}
$$

that is, all buyers and sellers enter on T to avoid waiting.

Social Welfare Under Socially Optimal Strategy

- Let $\left(B^{\circ}, S^{\circ}\right)$ be the socially optimal strategy profile under centralization. It can be easily seen

$$
B^{o}(t)=S^{o}(t)= \begin{cases}0 & \text { if } t<T \\ 1 & \text { if } t=T\end{cases}
$$

that is, all buyers and sellers enter on T to avoid waiting.

- Thus, the social welfare under $\left(B^{\circ}, S^{\circ}\right)$ is

$$
W\left(B^{\circ}, S^{\circ}\right)=\left(R_{b}+R_{s}\right) \mathbb{E}\left[\min \left\{X\left(\lambda_{b}\right), Y\left(\lambda_{s}\right)\right\}\right] .
$$

Price of Anarchy

- Price of Anarchy (PoA) is the ratio of socially optimal social welfare to worst NE social welfare.

Price of Anarchy

- Price of Anarchy (PoA) is the ratio of socially optimal social welfare to worst NE social welfare.
- As a measure for inefficiency of decentralization, $\mathrm{PoA} \geq 1$.

Price of Anarchy

- Price of Anarchy (PoA) is the ratio of socially optimal social welfare to worst NE social welfare.
- As a measure for inefficiency of decentralization, $\mathrm{PoA} \geq 1$.
- For our model,

$$
\begin{aligned}
\operatorname{PoA} & =\frac{W\left(B^{\circ}, S^{o}\right)}{W\left(B^{*}, S^{*}\right)} \\
& =\frac{\left(R_{b}+R_{s}\right) \mathbb{E}\left[\min \left\{X\left(\lambda_{b}\right), Y\left(\lambda_{s}\right)\right\}\right]}{\lambda_{b} R_{b} \mathbb{P}\left(X\left(\lambda_{b}\right)<Y\left(\lambda_{s}\right)\right)+\lambda_{s} R_{s} \mathbb{P}\left(X\left(\lambda_{b}\right)>Y\left(\lambda_{s}\right)\right)} .
\end{aligned}
$$

Note that PoA is independent of C_{b}, C_{s} and T.

Illustrations of PoA

$R_{b}=3$ and $R_{s}=3$, with λ_{b} and λ_{s} varying:

The infimum of PoA occurs at both λ_{b} and λ_{s} approaching 0 .

Last-Join-First-Trade Rule

- Inefficiency of NE is a result of non-cooperation among each side; the difference between two social welfares is equal to the expected waiting cost.

Last-Join-First-Trade Rule

- Inefficiency of NE is a result of non-cooperation among each side; the difference between two social welfares is equal to the expected waiting cost.
- To improve the efficiency, i.e., to reduce PoA, we propose a modification of the trading system: last-join-first-trade (LJFT) rule.

Last-Join-First-Trade Rule

- Inefficiency of NE is a result of non-cooperation among each side; the difference between two social welfares is equal to the expected waiting cost.
- To improve the efficiency, i.e., to reduce PoA, we propose a modification of the trading system: last-join-first-trade (LJFT) rule.
- LJFT would decrease the motivation of joining early, which, in turn, should decrease the waiting cost. For example, neither buyers nor sellers would arrive the platform before time 0 .

Last-Join-First-Trade Rule

- Inefficiency of NE is a result of non-cooperation among each side; the difference between two social welfares is equal to the expected waiting cost.
- To improve the efficiency, i.e., to reduce PoA, we propose a modification of the trading system: last-join-first-trade (LJFT) rule.
- LJFT would decrease the motivation of joining early, which, in turn, should decrease the waiting cost. For example, neither buyers nor sellers would arrive the platform before time 0 .
- In fact, we have

Theorem 2. Under LJFT, the NE is unique and identical to the socially optimal strategy, all participants will enter at T.

Last-Join-First-Trade Rule

- Inefficiency of NE is a result of non-cooperation among each side; the difference between two social welfares is equal to the expected waiting cost.
- To improve the efficiency, i.e., to reduce PoA, we propose a modification of the trading system: last-join-first-trade (LJFT) rule.
- LJFT would decrease the motivation of joining early, which, in turn, should decrease the waiting cost. For example, neither buyers nor sellers would arrive the platform before time 0 .
- In fact, we have

Theorem 2. Under LJFT, the NE is unique and identical to the socially optimal strategy, all participants will enter at T.

- That is, PoA $=1$!

Random-Draw Rule

- If fairness is an issue of the last-join-first-trade (LJFT) rule, a possible compromise would be the random-draw (RD) rule.

Random-Draw Rule

- If fairness is an issue of the last-join-first-trade (LJFT) rule, a possible compromise would be the random-draw (RD) rule.
- Under RD, the trade is matched by a buyer and a seller from random draws from respective queues.

Random-Draw Rule

- If fairness is an issue of the last-join-first-trade (LJFT) rule, a possible compromise would be the random-draw (RD) rule.
- Under RD, the trade is matched by a buyer and a seller from random draws from respective queues.
- As RD would also decrease the motivation of joining early, yet not as much as by LJFT, we have by Theorem 2 that under RD,

$$
1=P \circ A_{L J F T}<P \circ A_{R D}<P o A_{F J F T} .
$$

Final Remarks

- Can individuals behaviorally learn this unique NE by following simple rules and repeatedly playing the game?

Final Remarks

- Can individuals behaviorally learn this unique NE by following simple rules and repeatedly playing the game?
- Experiments of this type have been conducted - Rapoport et. al. [2004], where aggregate behavior of participants was remarkably similar to the theoretical equilibrium prediction.

Final Remarks

- Can individuals behaviorally learn this unique NE by following simple rules and repeatedly playing the game?
- Experiments of this type have been conducted - Rapoport et. al. [2004], where aggregate behavior of participants was remarkably similar to the theoretical equilibrium prediction.
- Rational learning is closely related to development of game theory, convex optimization, and machine learning. It is an essential complement of analytic results that can make them practical and realized.

Final Remarks

- Can individuals behaviorally learn this unique NE by following simple rules and repeatedly playing the game?
- Experiments of this type have been conducted - Rapoport et. al. [2004], where aggregate behavior of participants was remarkably similar to the theoretical equilibrium prediction.
- Rational learning is closely related to development of game theory, convex optimization, and machine learning. It is an essential complement of analytic results that can make them practical and realized.
- It would be interesting and useful to construct a learning strategy that would induce players of the game to make decisions gradually toward the NE strategy.

References

- W. S. Vickrey, 1969, Congestion theory and transport investment, Am. Econ. Rev..
- A. Glazer, R. Hassin, 1983, ?/M/1: on the equilibrium distribution of customer arrivals, Eur. J. Oper. Res..
- R. Jain, S. Juneja \& N. Shimkin, 2011, The concert queueing game: to wait or to be late, Disc. Event Dyn. Syst..
- M. Haviv, L. Ravner, 2021, A survey of queueing systems with strategic timing of arrivals, Queueing Syst..
- A. Rapoport, W. E. Stein, J. E. Parco \& D. A. Seale, 2004, Equilibrium play in single-server queues with endogenously determined arrival times, J. Econ. Behav. Organ..

Thanks for Your Attention

