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Strategic Time of Arrivals to a Service System

The morning commute problem: A fluid model for the
commuter’s decision of when to reach a congested bottleneck
– Vickrey [1969]

Rephrased the morning commute problem into a Markovian
queueing problem – Glazer and Hassin [1983]
The concert queueing game: (both fluid and Markovian
models) Should one go early to secure a good seat, but wait a
long time in queue, or go late when the queue is shorter but
the better seats already taken? – Jain et. al. [2011]
A survey of queueing systems with strategic timing of arrivals
– Haviv and Ravner [2021]
We will extend the study to modern service systems, the
online and e-commerce platforms.
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A Commerce Platform of Double-Sided Queues

A commerce platform is composed of two queues:
Demand queue of buyers for some item, and
Supply queue of sellers of the item,

a double-sided queue.

Platform is operated during [0,T],T > 0, where buyers and
sellers are allowed to arrive before time 0, and queue up.
State of the platform is unobservable.
The buyer and the seller choose the respective entering times
independently of everything else.
Numbers of joining buyers and sellers are independent Poisson
random variables with respective means λb and λs.
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Trading on the Commerce Platform

Trading rule is one-to-one and first-join-first-trade (FJFT).

At time 0, all waiting buyers and sellers are traded at once.
The surplus of demand or supply remains in queue.
Joining buyer finds supply queue nonempty is traded
immediately and departs; so is for joining seller.
At any time in (0,T), at most one queue is nonempty.
Balking and reneging are not allowed; every arrival will enter
and stay until either being traded or time T.
A buyer receives reward Rb from a trade and incurs waiting
cost at rate Cb, and (Rs,Cs) for a seller.
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A Mix of Non-Cooperative and Cooperative Games

One incentive for selecting entering time is to shorten the
waiting time, the other is to be traded because untraded
demand or supply at T is void while waiting cost is valid.

Buyers and sellers want to maximize their expected payoffs.
It is a mix of non-cooperative games among each side and a
cooperative game between two sides.
Suppose the buyer chooses B(t) as the distribution function
of entering time, and S(t) by the seller, that is, B(t) is the
strategy of buyer and S(t) is the strategy of seller.
Proposition. Under strategies B and S, with respective pdf’s
b(t) and s(t), numbers of joining buyers and sellers are
independent nonhomogeneous Poisson processes with intensity
functions λbb(t) and λss(t), respectively.
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The Strategy Profile

A strategy profile is composed of strategies of both buyers and
sellers, (B, S).

Expected payoff of a buyer who arrives at t, given all other
buyers use strategy B and all sellers use strategy S, is

πb(t|B, S) = RbP(Eb(t)|B, S)− CbE[Wb(t)|B, S],

where Eb(t) = a buyer entering at t is traded by T and
Wb(t) = waiting time until either being traded or T.

Expected payoff of the seller is similarly defined.
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Nash Equilibrium Strategy Profile
(B, S) is a Nash equilibrium (NE) strategy profile if and only if

πb(B|B, S) = sup
B̃∈D

πb(B̃|B, S),

πb(S|B, S) = sup
S̃∈D

πs(S̃|B, S),

where D is the collection of all distributions on (−∞,T].

In equilibrium, if a buyer enters at t and another enters at s,
then expected payoffs must be identical at these two instants.
Thus, for some τb and any t ∈ (τb,T),

d
dtπb(t|B, S) = 0.

Similarly, for some τs and any t ∈ (τs,T),
d
dtπs(t|B, S) = 0.
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Solutions of the Differential Equations

(i) For t ∈ (τb,T] \ {0},

B′(t) =



Cb
λb

P(X(λbB(t)) ≥ Y(λsS(t)))
RbP(X(λbB(t)) = Y(λs)− 1) + Cb

∫ T
t P(X(λbB(t)) = Y(λsS(u))− 1)du

,

if t > 0,
Cb
λb

1
RbP(X(λbB(t)) = Y(λs)− 1) + Cb

∫ T
0 P(X(λbB(t)) = Y(λsS(u))− 1)du

,

if t < 0,

and B(τb) = 0 and B(T) = 1.
(ii) For t ∈ (τs,T] \ {0},

S′(t) =



Cs
λs

P(X(λsS(t)) ≥ Y(λbB(t)))
RsP(X(λsS(t)) = Y(λb)− 1) + Cs

∫ T
t P(X(λsS(t)) = Y(λbB(u))− 1)du

,

if t > 0,
Cs
λs

1
RsP(X(λsS(t)) = Y(λb)− 1) + Cs

∫ T
0 P(X(λsS(t)) = Y(λbB(u))− 1)du

,

if t < 0,

and S(τs) = 0 and S(T) = 1.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Existence and Uniqueness of NE Strategy Profile

The differential equations of B′
(t), τb < t < T, and S′

(t),
τs < t < T, with B(τb) = S(τs) = 0 and B(T) = S(T) = 1
are the if-and-only-if condition of NE.

By Picard-Lindelöf theorem, we can show that the system of
ordinary differential equations for B(t) and S(t) has a unique
solution.
Theorem 1. The NE strategy profile exists uniquely.
Associated shapes of NE strategy (B, S) can shed insight on
the best response of the buyers and sellers in the cooperative
and non-cooperative game.
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Existence and Uniqueness of NE Strategy Profile

The differential equations of B′
(t), τb < t < T, and S′

(t),
τs < t < T, with B(τb) = S(τs) = 0 and B(T) = S(T) = 1
are the if-and-only-if condition of NE.
By Picard-Lindelöf theorem, we can show that the system of
ordinary differential equations for B(t) and S(t) has a unique
solution.

Theorem 1. The NE strategy profile exists uniquely.
Associated shapes of NE strategy (B, S) can shed insight on
the best response of the buyers and sellers in the cooperative
and non-cooperative game.
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Existence and Uniqueness of NE Strategy Profile

The differential equations of B′
(t), τb < t < T, and S′

(t),
τs < t < T, with B(τb) = S(τs) = 0 and B(T) = S(T) = 1
are the if-and-only-if condition of NE.
By Picard-Lindelöf theorem, we can show that the system of
ordinary differential equations for B(t) and S(t) has a unique
solution.
Theorem 1. The NE strategy profile exists uniquely.

Associated shapes of NE strategy (B, S) can shed insight on
the best response of the buyers and sellers in the cooperative
and non-cooperative game.
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Existence and Uniqueness of NE Strategy Profile

The differential equations of B′
(t), τb < t < T, and S′

(t),
τs < t < T, with B(τb) = S(τs) = 0 and B(T) = S(T) = 1
are the if-and-only-if condition of NE.
By Picard-Lindelöf theorem, we can show that the system of
ordinary differential equations for B(t) and S(t) has a unique
solution.
Theorem 1. The NE strategy profile exists uniquely.
Associated shapes of NE strategy (B, S) can shed insight on
the best response of the buyers and sellers in the cooperative
and non-cooperative game.
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Illustration of Non-Cooperation Between Buyers
Supply is deterministic with size 2 and at time T:

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-3 -2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Rb = 2 (b) λb = 4

With (a) a larger demand rate, competition becomes stronger, or
(b) a larger reward, it is more affordable,

the buyer tends to enter earlier for better chance to be traded,
shows non-cooperation between buyers.
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Illustration of Cooperation Between Buyers and Sellers
Rb = Rs = 4:

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-3 -2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

λb = λs = 2 λb = λs = 6

1. When all parameters are the same, two strategies are identical
shows cooperation between buyer and seller.
2. When both rates are larger, the competition results in a buyer
(seller) tends to arrive earlier.
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Illustration 1 of Mixed Non-Cooperate and Cooperate
Rb = 4,Rs = 2:

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

λb = λs = 6 λb = 6,λs = 4

1. When the supply rate is smaller, an insecure buyer tends to
arrive earlier while the secure seller enters later.
2. When max{τb, τs} < 0, respective areas to the left of 0, i.e.,
probabilities of arriving before 0, are close.
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Illustration 2 of Mixed Non-Cooperate and Cooperate
λb = 6,λs = 4:

-3 -2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

Rb = 4,Rs = 2 Rb = 2,Rs = 2

1. When the reward is reduced, a buyer can no longer afford to
arrive early so that b(t) is squeezed to the right.
2. While s(t), even with λs and Rs unchanged, moves rightward a
little accordingly.
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Illustration 3 of Mixed Non-Cooperate and Cooperate

λb = 6,λs = 4:

-3 -2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

(a) Rb = 4,Rs = 2 (b) Rb = 2,Rs = 4

When the demand rate is larger than the supply rate, comparing
(a) and (b), i.e., reversing respective rewards, shows that a buyer is
more concern on being traded than on waiting cost.
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Social Welfare Under NE Strategy

Let (B∗, S∗) be the unique NE. Associated social welfare is

W(B∗, S∗) = λbπb(B∗|B∗, S∗) + λsπs(S∗|B∗, S∗).

Since πb(B∗|B∗, S∗) = πb(t|B∗, S∗) for all t ∈ [τb,T],

πb(B∗|B∗, S∗) = πb(T|B∗, S∗) = RbP{X(λb) < Y(λs)}.

where X(µ) and Y(ν) are independent Poisson random
variables with means µ and ν, respectively.
Similarly, λsπs(S∗|B∗, S∗) = RsP{X(λb) > Y(λs)}, and,
thus,

W(B∗, S∗) = λbRbP{X(λb) < Y(λs)}+λsRsP{X(λb) > Y(λs)}.
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Social Welfare Under NE Strategy

Let (B∗, S∗) be the unique NE. Associated social welfare is

W(B∗, S∗) = λbπb(B∗|B∗, S∗) + λsπs(S∗|B∗, S∗).

Since πb(B∗|B∗, S∗) = πb(t|B∗, S∗) for all t ∈ [τb,T],

πb(B∗|B∗, S∗) = πb(T|B∗, S∗) = RbP{X(λb) < Y(λs)}.

where X(µ) and Y(ν) are independent Poisson random
variables with means µ and ν, respectively.

Similarly, λsπs(S∗|B∗, S∗) = RsP{X(λb) > Y(λs)}, and,
thus,

W(B∗, S∗) = λbRbP{X(λb) < Y(λs)}+λsRsP{X(λb) > Y(λs)}.
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Social Welfare Under NE Strategy

Let (B∗, S∗) be the unique NE. Associated social welfare is

W(B∗, S∗) = λbπb(B∗|B∗, S∗) + λsπs(S∗|B∗, S∗).

Since πb(B∗|B∗, S∗) = πb(t|B∗, S∗) for all t ∈ [τb,T],

πb(B∗|B∗, S∗) = πb(T|B∗, S∗) = RbP{X(λb) < Y(λs)}.

where X(µ) and Y(ν) are independent Poisson random
variables with means µ and ν, respectively.
Similarly, λsπs(S∗|B∗, S∗) = RsP{X(λb) > Y(λs)}, and,
thus,

W(B∗, S∗) = λbRbP{X(λb) < Y(λs)}+λsRsP{X(λb) > Y(λs)}.
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Social Welfare Under Socially Optimal Strategy

Let (Bo, So) be the socially optimal strategy profile under
centralization. It can be easily seen

Bo(t) = So(t) =
{

0 if t < T,
1 if t = T,

that is, all buyers and sellers enter on T to avoid waiting.

Thus, the social welfare under (Bo, So) is

W(Bo, So) = (Rb + Rs)E[min{X(λb),Y(λs)}].
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Social Welfare Under Socially Optimal Strategy

Let (Bo, So) be the socially optimal strategy profile under
centralization. It can be easily seen

Bo(t) = So(t) =
{

0 if t < T,
1 if t = T,

that is, all buyers and sellers enter on T to avoid waiting.
Thus, the social welfare under (Bo, So) is

W(Bo, So) = (Rb + Rs)E[min{X(λb),Y(λs)}].
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Price of Anarchy

Price of Anarchy (PoA) is the ratio of socially optimal social
welfare to worst NE social welfare.

As a measure for inefficiency of decentralization, PoA ≥ 1.
For our model,

PoA =
W(Bo, So)

W(B∗, S∗)

=
(Rb + Rs)E[min{X(λb),Y(λs)}]

λbRbP(X(λb) < Y(λs)) + λsRsP(X(λb) > Y(λs))
.

Note that PoA is independent of Cb,Cs and T.
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Price of Anarchy

Price of Anarchy (PoA) is the ratio of socially optimal social
welfare to worst NE social welfare.
As a measure for inefficiency of decentralization, PoA ≥ 1.

For our model,

PoA =
W(Bo, So)

W(B∗, S∗)

=
(Rb + Rs)E[min{X(λb),Y(λs)}]

λbRbP(X(λb) < Y(λs)) + λsRsP(X(λb) > Y(λs))
.

Note that PoA is independent of Cb,Cs and T.
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Price of Anarchy

Price of Anarchy (PoA) is the ratio of socially optimal social
welfare to worst NE social welfare.
As a measure for inefficiency of decentralization, PoA ≥ 1.
For our model,

PoA =
W(Bo, So)

W(B∗, S∗)

=
(Rb + Rs)E[min{X(λb),Y(λs)}]

λbRbP(X(λb) < Y(λs)) + λsRsP(X(λb) > Y(λs))
.

Note that PoA is independent of Cb,Cs and T.
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Illustrations of PoA

Rb = 3 and Rs = 3, with λb and λs varying:

The infimum of PoA occurs at both λb and λs approaching 0.
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Last-Join-First-Trade Rule

Inefficiency of NE is a result of non-cooperation among each
side; the difference between two social welfares is equal to the
expected waiting cost.

To improve the efficiency, i.e., to reduce PoA, we propose a
modification of the trading system: last-join-first-trade
(LJFT) rule.
LJFT would decrease the motivation of joining early, which, in
turn, should decrease the waiting cost. For example, neither
buyers nor sellers would arrive the platform before time 0.
In fact, we have
Theorem 2. Under LJFT, the NE is unique and identical to
the socially optimal strategy, all participants will enter at T.
That is, PoA = 1!



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Last-Join-First-Trade Rule

Inefficiency of NE is a result of non-cooperation among each
side; the difference between two social welfares is equal to the
expected waiting cost.
To improve the efficiency, i.e., to reduce PoA, we propose a
modification of the trading system: last-join-first-trade
(LJFT) rule.

LJFT would decrease the motivation of joining early, which, in
turn, should decrease the waiting cost. For example, neither
buyers nor sellers would arrive the platform before time 0.
In fact, we have
Theorem 2. Under LJFT, the NE is unique and identical to
the socially optimal strategy, all participants will enter at T.
That is, PoA = 1!
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Last-Join-First-Trade Rule

Inefficiency of NE is a result of non-cooperation among each
side; the difference between two social welfares is equal to the
expected waiting cost.
To improve the efficiency, i.e., to reduce PoA, we propose a
modification of the trading system: last-join-first-trade
(LJFT) rule.
LJFT would decrease the motivation of joining early, which, in
turn, should decrease the waiting cost. For example, neither
buyers nor sellers would arrive the platform before time 0.

In fact, we have
Theorem 2. Under LJFT, the NE is unique and identical to
the socially optimal strategy, all participants will enter at T.
That is, PoA = 1!
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Last-Join-First-Trade Rule

Inefficiency of NE is a result of non-cooperation among each
side; the difference between two social welfares is equal to the
expected waiting cost.
To improve the efficiency, i.e., to reduce PoA, we propose a
modification of the trading system: last-join-first-trade
(LJFT) rule.
LJFT would decrease the motivation of joining early, which, in
turn, should decrease the waiting cost. For example, neither
buyers nor sellers would arrive the platform before time 0.
In fact, we have
Theorem 2. Under LJFT, the NE is unique and identical to
the socially optimal strategy, all participants will enter at T.

That is, PoA = 1!
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Last-Join-First-Trade Rule

Inefficiency of NE is a result of non-cooperation among each
side; the difference between two social welfares is equal to the
expected waiting cost.
To improve the efficiency, i.e., to reduce PoA, we propose a
modification of the trading system: last-join-first-trade
(LJFT) rule.
LJFT would decrease the motivation of joining early, which, in
turn, should decrease the waiting cost. For example, neither
buyers nor sellers would arrive the platform before time 0.
In fact, we have
Theorem 2. Under LJFT, the NE is unique and identical to
the socially optimal strategy, all participants will enter at T.
That is, PoA = 1!
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Random-Draw Rule

If fairness is an issue of the last-join-first-trade (LJFT) rule, a
possible compromise would be the random-draw (RD) rule.

Under RD, the trade is matched by a buyer and a seller from
random draws from respective queues.
As RD would also decrease the motivation of joining early, yet
not as much as by LJFT, we have by Theorem 2 that under
RD,

1 = PoALJFT < PoARD < PoAFJFT.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random-Draw Rule

If fairness is an issue of the last-join-first-trade (LJFT) rule, a
possible compromise would be the random-draw (RD) rule.
Under RD, the trade is matched by a buyer and a seller from
random draws from respective queues.

As RD would also decrease the motivation of joining early, yet
not as much as by LJFT, we have by Theorem 2 that under
RD,

1 = PoALJFT < PoARD < PoAFJFT.
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Random-Draw Rule

If fairness is an issue of the last-join-first-trade (LJFT) rule, a
possible compromise would be the random-draw (RD) rule.
Under RD, the trade is matched by a buyer and a seller from
random draws from respective queues.
As RD would also decrease the motivation of joining early, yet
not as much as by LJFT, we have by Theorem 2 that under
RD,

1 = PoALJFT < PoARD < PoAFJFT.
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Final Remarks

Can individuals behaviorally learn this unique NE by following
simple rules and repeatedly playing the game?

Experiments of this type have been conducted – Rapoport et.
al. [2004], where aggregate behavior of participants was
remarkably similar to the theoretical equilibrium prediction.
Rational learning is closely related to development of game
theory, convex optimization, and machine learning. It is an
essential complement of analytic results that can make them
practical and realized.
It would be interesting and useful to construct a learning
strategy that would induce players of the game to make
decisions gradually toward the NE strategy.
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simple rules and repeatedly playing the game?
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al. [2004], where aggregate behavior of participants was
remarkably similar to the theoretical equilibrium prediction.

Rational learning is closely related to development of game
theory, convex optimization, and machine learning. It is an
essential complement of analytic results that can make them
practical and realized.
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strategy that would induce players of the game to make
decisions gradually toward the NE strategy.
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Can individuals behaviorally learn this unique NE by following
simple rules and repeatedly playing the game?
Experiments of this type have been conducted – Rapoport et.
al. [2004], where aggregate behavior of participants was
remarkably similar to the theoretical equilibrium prediction.
Rational learning is closely related to development of game
theory, convex optimization, and machine learning. It is an
essential complement of analytic results that can make them
practical and realized.

It would be interesting and useful to construct a learning
strategy that would induce players of the game to make
decisions gradually toward the NE strategy.
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Final Remarks

Can individuals behaviorally learn this unique NE by following
simple rules and repeatedly playing the game?
Experiments of this type have been conducted – Rapoport et.
al. [2004], where aggregate behavior of participants was
remarkably similar to the theoretical equilibrium prediction.
Rational learning is closely related to development of game
theory, convex optimization, and machine learning. It is an
essential complement of analytic results that can make them
practical and realized.
It would be interesting and useful to construct a learning
strategy that would induce players of the game to make
decisions gradually toward the NE strategy.
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